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Development of a high-power tube suitable to power a Ka-band (34.5-GHz) an-

tenna transmitter located at the Goldstone, California, tracking station is contin-

uing. The University of Maryland Laboratory for Plasma Research and JPL are

conducting a joint effort to test the feasibility of phase locking a second-harmonic

gyrotron both by direct injection at the output cavity and by using a priming cavity
to bunch the electrons in the beam. This article describes several design options

and the results of computer simulation testing.

I. Introduction

For the past 7 years, there has been continuing effort in

the design and development of a high-power tube to gen-

erate 200 to 400 kW of continuous wave (CW) power at

34.5 GHz (Ka-band) for a high-power antenna transmitter
to be located at Goldstone, California. Varian Associates

completed the design of a 400-kW gyroklystron in 1986 [1].

Subsequently, several studies were made of the feasibility

of phase locking a gyrotron oscillator [2,3]. Two meth-
ods of phase locking are possible: adding a priming cavity

to bunch the beam or direct injection at the output. A

recently developed harmonic gyrotron is a promising new
device for this transmitter.

The original plan was to generate detailed electrical,

mechanical, and thermal designs that would form the ba-

sis for the construction and testing of a prototype gyro-

klystron. Due to lack of funding, construction of the pro-

totype never occurred [1]. Nonetheless, the findings from

the design of the gyroklystron are applicable to the de-

sign of a gyrotron with a priming cavity; both devices are

similar in performance and in construction.

II. Gyroklystron Amplifier

Table 1 is a list of important design specifications,

and Fig. 1 is a schematic diagram of the proposed gyro-

klystron. The assembly consists of a magnetron injection

gun (MIG), two buncher cavities, an output cavity, a col-
lector and RF windows, and a mode converter. Not shown

is the superconducting magnet assembly. The total assem-

bly length, including cathode oil tank and mode converter

at the output, is 400 cm. The design incorporates the

following important technical and conceptual advances:

(1) Space-charge effects cause increased beam velocity

spread in the drift space that connects the gun to

the circuit. Nevertheless, beam quality can be main-
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tainedbycompensatingfor thiseffectandby mini-
mizingthedistancefromthegunto thecircuit.

(2) Sufficientloadingcanbeprovidedby bunchercav-
ities madeof graphite,replacingexternalcavity
loads.Thisrequiresa circuitdesignthat allowsno
morethan5kWof heatdissipationineachbuncher
cavity.

(3) Drift sectionsthatareweaklycutoffaffectbuncher
cavitydesigns,appreciablyalteringbeamloading
andcavityresonantfrequency.Linearstabilityre-
quiresunconventionalbunchercavitygeometries.

(4) Theamplifiercanoperateasa mode-lockedoscil-
lator,with outputphaseandfrequencycontrolled
at saturationevenif theoutputcavityis unstable
in the linearmode.Stabilityconstraintscanbere-
laxedwhilestill allowingthedeviceto performas
required.

(5) Themagneticfieldprofilein thetapersectioncon-
nectingtheoutputcavityto thecollectoraffectslin-
eargainandnonlinearbehavior(hysteresiseffectsof
theamplifier).

A maximumdesignvoltagegradientwell below
100kV/cmwaschosenforreliableandlong-lifeCWoper-

ation. After considerable effort had been expended to re-

duce the gradient on the high-voltage seal using previously

designed guns, it was concluded that a major redesign was

necessary. As a result, a new gun was designed with a

larger outer diameter and new internal dimensions; this

design resulted in reduction of the surface gradient at the

gun anode tip to levels below 75 kV/cm.

Velocity spread, a most important parameter, affects

the efficiency of gyrotrons. A MIG cathode usually op-

erates in the temperature-limited mode, and the perpen-

dicular velocity spread of electrons is assumed to be in-

dependent of the current as the beam drifts from the gun

acceleration region to the first cavity. This assumption of

laminar flow required a higher cathode angle, resulting in

a cathode loading in excess of 10 A/cm 2. Because of high

loading, this approach was abandoned.

Space-charge effects cause increasing perpendicular ve-

locity spread in the gun drift space. This was a previ-

ously unexplored phenomenon in gun design. Electrons

emitted from the upper part of the cathode continuously

accelerate while those emitted from the lower part decel-

erate. For electrons with intercepting paths, the result is

nonuniform acceleration. Many techniques can be used to
reduce the effects of increased velocity spread. Reducing

gun drift space length, for example, significantly reduces

the velocity spread; this reduction occurs because velocity
spread enhancement is a cumulative effect. The maximum

current loading tolerated in the magnet dictates the min-
imum length between gun and circuit. The addition of

a bucking coil reduced velocity spread by 50 percent by

modifying the field profile in the gun acceleration region.

The interactive circuit consists of two buncher cavities

and an output cavity. Buncher cavities use the dominant

TEll mode while the output cavity uses the overmode

TEl2. Between cavities, drift sections prevent internal

feedback. A third buncher cavity to fully bunch the beam

before entering the output cavity required large power dis-
sipation, estimated at between l0 and 20 kW for a funda-

mental mode TEll cavity, and consequently was not in-

cluded. Final bunching of the electrons occurs in the out-

put cavity to develop the required gain. An overmoded

output cavity keeps ohmic wall dissipation to the reason-

able levels of less than 1 kW/cm 2 and provides sufficient

stored energy compatible with 400-kW output.

A special design feature consists of manufacturing the
TEll_ mode buncher cavities out of graphite in place of

external loads. A cold test of the closed graphite cavity

gave an ohmic Q of about 150. The drift sections shift

resonance down by about 2 GHz and modify the mode

profile. The external Q also approximately doubled with
the addition of drift sections. The solution to the problem

presented by weakly cutoff drift sections was to operate
the buncher cavities in the TEl12 mode. This solution

provided stable operation and no mode competition with

TE111. Axial beam velocity spread did affect gain and

output power. A 23-percent reduction in saturated out-

put power occurred for a 15-percent axial velocity spread.

Limiting axial velocity spread to less than 10 percent is

necessary to maintain acceptable gain and output, power.

A normalized magnetic field of 0.937 provides optimum
performance, which is also close to the stability boundary.

At low drive power levels, computer simulations predict

a constant linear gain, up to between 3.5 and 4 watts of

drive, where a large nonlinear increase in power occurs.

The jump in power was 3 dB and the phase decr,;ased by

60 deg. At this higher output power level, the phase again

became constant, indicating amplifier operation When

reducing drive, the output did not follow the same path

as when drive was increasing--the sudden jump in output

power occurred at a lower drive power level. One conclu-

sion drawn was that when operating under CW-saturated
conditions, a well-defined line dividing stable and _mstable

operation does not exist. When the magnetic field was in-

creased past the stability boundary, sufficient drive power

locked the output, causing output phase and frequency
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to followinputdrivewithina narrowbandwidth.Forall
practicalpurposes,thedeviceperformedasaphase-locked
saturatedamplifier.

If beamwaveinteractionoccursin theup-taperregion
of theoutputcavity(asit surelymustunlessthemagnetic
fieldsuddenlydecreasesrightoutsidetheoutputcavity),
thesuddenrisein gainandthehysteresiseffectsof out-
putpowerwithdrivepowerpreviouslyseeninacomputer
simulationdisappear.Allowinginteractionin theup-taper
didnotchangesaturatedoutputpower.

Table2 summarizessensitivitiesto keyoperatingpa-
rameters.Computersimulationsprovidedthevalues.Two
parametersthat aredifficultto predictdueto incomplete
theoryareharmonicemissionsandthenoisefigure.Based
onresultsofmeasurementsmadeonothergyrotrons,sec-
ondharmonicemissionshouldbelessthan-20 dBc. As
forthenoisefigure,anestimateof 83dBdueto shotnoise
in a temperature-limitedbeamis calculated.Thenoise
contributionofelectrostaticmodeswasnotcalculated.

III. Two-Cavity Phase-Locked Gyrotron

If operating at one power level is acceptable, then an

oscillator could be phase locked to provide communica-

tion and radar signals. Victor Granatstein, Peter Latham,

and Yuval Carmel made two feasibility studies of gyrotrons

with two cavities, one developing a new gyrotron and the

other modifying the Varian VGA-8003 by adding a prim-

ing cavity [2,3]. Use of a priming cavity allows bunching
of the electrons in the beam. With the beam bunched, fre-

quency and phase of the output can be controlled. Except
for a decrease in output power from 400 kW to 200 kW

and linear amplifier operation, the requirements remained

practically unchanged from those previously used for the

gyroklystron design. Both designs meet minimum require-
ments for this transmitter. The modified VGA-8003 meets

the minimum requirement of 25 dB for carrier suppression

but not the goal of 60 dB. Table 3 gives a comparison of

results of these two feasibility studies. Table 4 smnmarizes

the sensitivity to variations in operating parameters.

In the first feasibility study, the output cavity operates

in the circularly polarized TEll mode. With an operating

output power capability of 330 kW, the calculated peak
cavity surface dissipation was 2.5 kW/cm 2, which is ex-

cessive. By limiting the output power to 260 kW, the
peak wall loss equals 2 kW/em 2 and average losses equal

1.2 kW/cm 2. These preliminary values are quite high but

actual values will probably be somewhat lower in the fi-

nal design. Other major requirements are an efficiency

of at least 30 percent with a bandwidth of better than

30 MHz. To operate from commercially available genera-

tors requires 35 dB of gain. Calculations show a buncher

cavity with a Q of 22, a drift length of 8 cm, and an out-

put cavity with a minimum diffractive Q of 44--all values

that are easily achievable in a practical device. This design

meets the major requirements.

The addition of a priming cavity and drift space to the

Varian VGA-8003 free-running gyrotron oscillator is an

alternative to the previous two-cavity phase-locked gyro-

tron. The VGA-8003 operates in the TEol mode, which

has much lower cavity wall losses. For the VGA-8003, an

effÉciency of 37 percent compared favorably to 26 percent

estimated for the previous design. The VGA-8003 requires

two mode converters, one to convert TEol to TEll and

another to convert linear to right-hand polarization. The

addition of a priming cavity and drift section lengthens the

VGA-8003, which affects magnet design and efficiency as a

result of increased velocity spread. TEol mode cavities are
overmoded and allow mode competition. Whatever the ap-

proach, a fidl design remains to be made. The conclusion

reached is that use of a priming cavity is a possible means

of phase locking a gyrotron to meet the requirements for
a DSN Ka-band transmitter.

IV. Single-Cavity Phase-Locked Gyrotron

Use of a developed gyrotron without any modifications

is particularly attractive because it minimizes tube devel-

opment cost and risk. The only available gyrotron, the
VGA-8003 manufactured for Lawrence Livermore by Var-

ian Associates, requires a small shift in frequency from 35
to 34.5 GHz. The present tube is not tunable and the out-

put frequency may be anywhere in a 100-MHz bandwidth

for optimum performance. For DSN application it would

be necessary to optimize performance close to 34.5 GHz.

Phase control in a single cavity gyrotron can be

achieved by feeding a signal from a microwave reference

source back into the gyrotron's output cavity. The rela-
tionship between phase-locking bandwidth and gain, which

is exact for a single cavity, is

where wo and Q are the cavity resonant frequency and

quality factor, respectively. Here 6w is the locking

bandwidth, which is 1/2 the total bandwidth, and G is

the gain. When G >> I, the expression reduces to Adler's

relation [4]
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Typical values for Q and output power Po from Table 5

require 3.3 kW of drive power Pi into the output cavity of

the gyrotron for a locking bandwidth of 15 MHz. Allow-

ing for transmission losses, the driver requires an output
of 5 kW, but no tubes are available for this power level.

Available drivers are 100 W for a travelling wave tube and

1 kW for a klystron. This reduces locking bandwidth to
about +7 MHz for a 1-kW driver and 4-2.3 MHz for the

100-W driver. To obtain additional bandwidth the cen-

ter frequency of oscillation may be shifted by varying the

beam voltage.

The dependence of resonant frequency on beam voltage

was derived by Victor Granatstein, Peter Latham, and Yu-

val Carmel in a report prepared for JPL [5]. The equation

relating pitch angle to beam voltage is

Vb do_ 1+_ _

dVs 2

Using typical values for the VGA-8003 from Table 5,

d_ d¼
-- = 0.026-
_, Wb

a change of 2.8 kV corresponds to a frequency change
of 30 MHz. The stability limit of the DSN beam sup-

ply is 0.01 percent, which maintains resonant frequency to
4-100 kHz. The addition of a phase detector that compares

the gyrotron's output with a reference signal could be used

to generate an error signal to control the beam supply with

a high-power pass tube. For example, frequency hopping
of 8 MHz in less than 10 #sec and frequency ramping of

78.4 x 106 MHz/sec requires the beam voltage to shift

the resonant frequency for the injected signal to reacquire

locking. Although this appears feasible, detailed design

analysis needs to be completed. The frequency response

of the closed-loop phase detector and modulator is a major

limitation to controlling beam voltage.

The cathode voltage is the only practical parameter
that can be used to shift the gyrotron frequency. The

magnetic field controls gyrotron output frequency, but a
fundamental problem exists in modulating this parame-

ter. Magnetic field changes take too much time to diffuse

through the conductive copper walls of the microwave cav-

ity. A changing magnetic field induces eddy currents in the
walls, and the flux inside the cavity is not fully changed

until the eddy currents have decayed. The time for the

eddy currents to decay is roughly 10 msec.

The use of a developed gyrotron shifts the costs and

risks to the development of a high-power circulator and

a high-voltage pass-tube modulator. The circulator iso-

lates the locking signal from the high-power signal out of

the gyrotron. Preliminary calculations suggest that such
a circulator is realizable in a beam waveguide transmis-

sion line [7]. A quasi-optical circulator placed in the beam
waveguide directs the gyrotron signal to the antenna while

directing the driver locking signal back to the output cav-

ity of the gyrotron. Design of this component is critical to

carrying out this phase-locking approach.

V. Second Harmonic Gyrotron

The University of Maryland Laboratory of Plasma Re-

search recently acquired a second harmonic free-running

gyrotron oscillator from the People's Republic of China.
That gyrotron has produced over 200-kW of output power

at 35 GHz with an efficiency of 35 percent. Its success

is largely due to the use of a special complex cavity [6].
Dr. H. Z. Guo, who invented this cavity, is now working

at the University of Maryland. Phase-locking of this gy-

rotron is feasible using the same techniques previously dis-

cussed in this article for the VGA-8003. Some advantages

of this device are especially attractive. Use of the second

harmonic reduces the cyclotron frequency by a factor of

two; consequently, the magnetic field strength is also re-

duced by two. The magnetic field for a 35-GHz gyrotron

requires nominally 13,000 gauss, which can be generated

only with a superconducting magnet. For a second har-

monic gyrotron, a magnetic field of 6500 gauss is easily
achieved with room temperature solenoid magnets or even

permanent magnets.

When phase locking a second-harmonic gyrotron by

means of a priming cavity, the locking signal frequency

is 17.5 GHz. Drivers at this lower frequency are avail-

able with higher output power. Phase locking directly into

the output cavity requires a signal at the fundamental cy-

clotron frequency of 35 GHz. Still, the advantage of a

lower magnetic field is preserved. Figure 2 is a schematic

of the proposed second harmonic gyrotron with a prim-

ing cavity. The output propagates in the TEo3 mode, and

conversion to TEll can be done efficiently.

Vh Future Work

The feasibility tests of a phase-locked second-harmonic

gyrotron are continuing under a joint effort by the Uni-
versity of Maryland Laboratory for Plasma Research and
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JPL.Twomethodsarestill beingconsidered:directin-
jectionat theoutput cavityandbunchingtheelectrons
in the beam. JPL hasresponsibilityfor developinga
quasi-opticalcirculator.TheUniversityof Marylandhas

a second-harmonicgyrotronfromChinaandis develop-
ing amodulatorto pulsethis tube. Thegoalis to show
thecapabilityofphaselockingagyrotronandto generate
specificationsfora Ka-bandtransmitter.
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Table 1. Design speclficallons.

Parameter Requirement

Center frequency, GHz

Instantaneous bandwidth, MHz

Saturated gain, dB

RF saturated output power, kW

Harmonic power

Phase switching, 180 deg, nsec

Out of band power, percent

Amplitude modulation, dBc

Group delay dispersion, psec

Frequency hopping, MHz

Frequency ramping, Hz/nsec

Carrier suppression, dB

RF output mode

Extraneous modes, dB

Elllpticity, dB

Stability, output power, dB

DC beam power supply, MW

DC beam voltage, kV

Efficiency, percent

Duty

34.5

34 (30 for gyrotron)

50 (minimum 35)

400 CW (minimum 200)

TBD

4O0

<1 at 0.1 Hz from carrier

-40 (1 Hz to 1000 Hz)

1.2 (4-6 MHz)

8 in 10 _sec

0.04

25 with 60 goal

TEl 1 circular polarized

-15

<1

0.1

1.1 maximum

100 maximum

40 (minimum 30)

CW (up to 4-hr pulse)

Table 2. Gyroklyslron pushing factors.

Parameter Phase Power

Cathode voltage 0.01 deg/volt 0.0013 dB/volt

Filament voltage 90 deg/volt 1.45 dB/volt

Linear drive power 8 deg/dB 0.98 dB/dB

Saturated drive power 5 deg/dB 0.029 dB/dB

Circuit field 0.98 deg/gauss 0.00615 dB/gauas

Gun field 26 deg/gauss 0.74 dB/gau_

Body coolant temperature 0.7 deg/deg C 0.003 clB/deg C

Collector coolant temperature 1 deg/deg C _0
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Table 3. Two-cavity gyrotron expected transmitter pedormance.

Parameter New design Modified VGA-8003

Center frequency, GHz 34.5 35

Instantaneous bandwidth, MHz 200 50

Duty Continuous Contimtous

Output power, kW 260 230

RF output mode TEll TEol

Han'nonics, dB < - 20 < -20 dB

Drive power, W _100 _100

Efficiency, percent >26 ,-,37

Table 4. Two-cavity gyrotron pushing factors.

Parameter New design Modified VGA-8003

Change in output power, percent 0.5
Change in beam current, percent

Chan_e in output power_ percent 0.8
Change in beam voltage, percent

Change in phase, deg 3.3
Change in beam current, percent

Change in phase, deg 20
Change in beam voltage, percent

Chan[[e in output power r dB 0.2
Change in injector power, dB

Chanse in output phase, deg
Change in input power, dB

Chanse in beam current, percent 0.083 _
Change in filament voltage, percent

Change in output power, percent 0.013
Change in cavity temperature, deg (.;

Change in output power, percent ,._0
Change in collector temperature, deg (S

Chan[[e in phase_ percent 0.08
Change in cavity temperature, deg (S

Chan_e in phase_ percent 1.5
Change in collector temperature, deg G

Chan_e in phase_ percent 1.8
Change in waveguide temperature, deg U

Change in output power, percent ,'_0
Change in waveguide temperature, deg C

0.4

1.0

1.8

41

0.3

1.0

0.083 _-

0.02

._0

0.03

1.5

1.8

_0

Based on Varian Associates, Inc., estimates for VGT-8105 TWT Gun.
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Table 5. Specifications for Varlan gyrotron oscillator VGA-8003.

Parameter Minimum Maximum Typical

Output cavity mode -- -- TEol

Frequency, GHz 34.5 35.5 35.0

Q 250 300 275

Beam voltage, kV 70 90 85

Beam current, A 4 10 7

vt = Vio/Vzo 1.5 2.0 1.75

Magnetic field, kG -- -- 13.6

Beam radius, cm -- -- 0.254
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_- OUTPUT [-UP TAPER

TANK _ _ I/1 _ r_ A A

400 cm

Fig. 1. Schematic of proposed gyroklystron amplifier.

1

1. MAGNETRON
INJECTION GUN

2. RADIATION ABSORBER

3. SUBHARMONIC INPUT
CAVITY

5. SPECIAL COMPLEX CAVITY 6. COLLECTOR

a. CUTOFF TRANSITION 7. OUTPUT WINDOW

b. TE02 MODE PROPAGATION SECTION

c. TE02 _TE03 MODE CONVERTER

d. TE03 MODE PROPAGATION SECTION
4. RADIATION SUPPRESSED

DRIFT SECTION e. DIFFRACTION OUTPUT

Fig. 2. Schematic design of a Ka-band, compact, phased-locked gyrotron with subharmonlc injecUon.
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